Dental trauma on primary teeth at different root resorption stages ‐ a dynamic finite element impact analysis of the effect on the permanent tooth germ
Autor(es): Vilela ABF, Soares PBF, Oliveira FS, Garcia-Silva TC, Estrela C, Versluis A, Soares CJ
Palavras-chave: dental trauma; finite element analysis; permanent tooth germ; primary tooth; stress distribution.
BACKGROUND/AIM:
Dental trauma is a common emergency in children with primary teeth. The aim of this study was to determine stress propagation to the permanent tooth germ and surrounding bone and soft tissues during dental trauma to primary central incisors with three levels of physiological root resorption.
MATERIAL AND METHODS:
Stresses were determined using finite element analysis (FEA). Cross-sectional models were created using cone-beam computed tomography images of 3.5, 5, and 6 years olds, representing three different physiological root resorption stages of a maxillary primary central incisor. The models included periodontal ligament, bone and soft tissues. An impact with an asphalt block moving at 1 m/s was simulated for two impact two directions, frontal on the labial tooth surface and on the incisal edge. Stresses and strains were recorded during impact.
RESULTS:
The impact caused stress concentrations in the surrounding bone and soft tissues and permanent tooth germ, regardless of the direction of impact and the primary tooth resorption stage. Impact stresses in dental follicles and surrounding bone increased in models with more physiological root resorption of the primary tooth. Incisal impact generated higher stress concentrations in surrounding bone and soft tissues and permanent tooth germ regardless of physiological root resorption stage. The primary incisor with no physiological root resorption showed high stress concentrations at its root apex.
CONCLUSION:
During impact to a primary incisor, stresses most significant for potential damage to the formation of permanent enamel and dentin were at the dental follicle and surrounding bone tissue with the three levels of physiological root resorption. This article is protected by copyright. All rights reserved.